Abstract
The scrambling of MOSFET below 22nm, 14nm, unwanted Short Channel Effects (SCE) like punch through, drain-induced barrier lowering (DIBL), along with huge leakage current are flowing through the device, which is not recognized for better performance. Multi-gate MOSFET generally measured as Fin-FET is the best substitute vital to stunned short channel effects. The work highlights results of the current-voltage electrical characteristics of the n-channel triple gate Fin-FET gatherings. The paper focuses on the study of geometry-based device design of Fin-FET by changing high k dielectrics materials from silicon SiO2 (3.9), Hafnium Oxide (HfO2), and metal gate work function ranging from 4.1eV to 4.5eV. The approach and simulation of 3Dimensional Fin-FET is carried to evaluate the better performance parameters of device for change in gate length by deploying different dielectrics materials. The effect on ratio of on current (ION) and off current (IOFF), threshold voltage (VTH), subthreshold slope (SS), and drain-induced barrier lowering (DIBL) is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Natural Computing Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.