Abstract
Sensitivity, bandwidth, and noise equivalent power (NEP) are important indicators of the performance of microwave detectors. The previous reports on spin-torque microwave detectors (STMDs) have proposed various approaches to increase the sensitivity. However, the effects of these methods on the other two indicators remain unclear. In this work, macrospin simulation is developed to evaluate how the performance can be optimized through changing the material (tilt angle of reference-layer magnetization) and operational parameters (the direction of magnetic field and working temperature). The study on the effect of magnetic field reveals that the driving force behind the performance tuning is the effective field and the equilibrium angle between the magnetization of the free layer and that of the reference layer. The material that offers the optimal tilt angle in reference-layer magnetization is determined. The sensitivity can be further increased by changing the direction of the applied magnetic field and the operation temperature. Although the optimized sensitivity is accompanied by a reduction in bandwidth or an increase in NEP, a balance among these performance indicators can be reached through optimal tuning of the corresponding influencing parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.