Abstract
AbstractSiC ceramic lattice structures (CLSs) via additive manufacturing (AM) have been recognized as potential candidates in engineering fields owing to their various merits. Compared with traditional SiC CLSs, SiC triply periodic minimal surface (TPMS) CLSs could possess more outstanding properties, making them more promising for wider applications. Since SiC CLSs are hard to be fabricated through stereolithography techniques because of inferior light performance, the laser powder bed fusion (LPBF) process via selective sintering is an effective method to prepare near‐net‐shaped SiC TPMS lattices. As the mechanical performances of lattice structures are the foundation for future practical applications, it is of great significance to optimize the preparation process, thus improving the mechanical properties of SiC TPMS structures. In this work, the optimal printing parameters of the LPBF and liquid silicon infiltration process for SiC ceramic TPMS CLSs with three different volume fractions were systematically illustrated and analyzed. The effects of the printing parameters and carbon densities on the fabrication accuracy, microstructure, and mechanical performance of SiC TPMS CLSs were defined. The mechanism of the reactive sintering process for the SiC TPMS lattice structure was revealed. The results reveal that Si/SiC TPMS CLSs with optimum preparation have superior manufacturing accuracy (most less than 6%), relatively high bulk densities (about 2.75 g/cm3), low residual Si content (6.01%), and excellent mechanical properties (5.67, 15.4, and 44.0 MPa for Si/SiC TPMS CLSs with 25%, 40%, and 55% volume fractions, respectively).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.