Abstract

Based on the thermosize effects of a confined ideal Maxwellian gas, we established a model of micro/nano-scaled heat pump including two isothermal and two isobaric processes, where the Joule-like heating effect was analyzed in detail by using the nonequilibrium thermodynamic theory. Further, in order to improve the performance of a single thermosize device, a model of two-stage micro/nano-scaled heat pump with multiple micro/nano components is for the first time put forward. The general expressions of heating load and coefficient of performance for the single and the two-stage heat pump are derived. The influences of the internal and external irreversibilities of the system, i.e., Fourier heat flow and the Joule-like heating and the finite rate heat transfer with the reservoirs, on the performance characteristic of thermosize devices are studied in detail. Moreover, we also discuss the effect of the allocation the thermosize components on the optimal performance of the two-stage micro/nano-scaled heat pump cycle. It is found that in the presence of the internal and external irreversibilities, the two kinds of the micro/nano-scaled heat pump can achieve specific heating performance. In particular, when the total number M of the thermosize components is fixed, both the maximum of the optimal coefficient of performance Φopt,max and the maximum of the heating load Πopt,max corresponding to the optimal coefficient of performance appear near n=M/2 with n being the number of the thermosize elements of the top stage. The results obtained here show several main irreversibility source of the micro/nano-scaled heat pump and have potential applications in the efficient utilization and conversion of energy in the microchannel system using gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call