Abstract

Present study deals with parametric optimization and performance evaluation of an air-cooled organic Rankine system for the low-temperature geothermal source, especially considering the effects of turbine isentropic efficiency. Turbine isentropic efficiency is predicted with turbine size parameter and volume ratio, using the well-known correlation for single-stage axial turbine. Optimal performances with the objective of maximizing system exergy efficiency are compared with the common used working fluid R245fa and two environmental friendly working fluids R1234ze(E) and R1234ze(Z). Highest turbine isentropic efficiency is achieved for working fluid R1234ze(Z). The optimal turbine inlet vapor is overheating for Working fluid R1234ze(E) with the limitation of allowable minimum geothermal brine reinjection temperature. Due to the influence of turbine isentropic efficiency, optimal system exergy efficiency for working fluid R1234ze(E) is 0.4576 for the 100 kg/s geothermal source, which is slightly higher than the value of 0.4487 for the 10 kg/s geothermal source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.