Abstract

AbstractSwarm salp algorithm is a swarm intelligence optimization algorithm enlightened by the movement and foraging behaviors of the salp population. The salp swarm algorithm (SSA) has a simple structure and fast processing speed and can gain significant results on objective functions with fewer local optima. However, it has poor exploration ability and is easy to suffer from the local optimal solutions, so it performs poorly on multimodal objective functions. Besides, its unfair balance of exploration and exploitation is another notable shortcoming. To ameliorate these shortcomings and enhance the algorithm’s performance on multimodal functions, this research proposes simulated annealing (SA) improved salp swarm algorithm (SASSA). SASSA embeds the SA strategy into the followers’ position updating method of SSA, performs a certain number of iterations of the SA strategy, and uses Lévy flight to realize the random walk in the SA strategy. SASSA and 23 original and improved competitive algorithms are compared on 30 IEEE CEC2017 benchmark functions. SASSA ranked first in the Friedman test. Compared with SSA, SASSA can obtain better solutions on 27 benchmark functions. The balance and diversity experiment and analysis of SSA and SASSA are carried out. SASSA’s practicability is verified by solving five engineering problems and the fertilizer effect function problem. Experimental and statistical results reveal that the proposed SASSA has strong competitiveness and outperforms all the competitors. SASSA has excellent exploration ability, suitable for solving composition functions with multiple peaks. Meanwhile, SASSA brings about a good balance of exploration and exploitation and dramatically improves the quality of the solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.