Abstract

Salp Swarm Algorithm (SSA) is a recent metaheuristic algorithm developed from the inspiration of salps’ swarming behavior and characterized by a simple search mechanism with few handling parameters. However, in solving complex optimization problems, the SSA may suffer from the slow convergence rate and a trend of falling into sub-optimal solutions. To overcome these shortcomings, in this study, versions of the SSA by employing Gaussian, Cauchy, and levy-flight mutation schemes are proposed. The Gaussian mutation is used to enhance neighborhood-informed ability. The Cauchy mutation is used to generate large steps of mutation to increase the global search ability. The levy-flight mutation is used to increase the randomness of salps during the search. These versions are tested on 23 standard benchmark problems using statistical and convergence curves investigations, and the best-performed optimizer is compared with some other state-of-the-art algorithms. The experiments demonstrate the impact of mutation schemes, especially Gaussian mutation, in boosting the exploitation and exploration abilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.