Abstract

A hybrid numerical model of the magnetic refrigerator with multi-material microchannel regenerator has been developed. The magnetocaloric effect was implemented using instantaneous temperature rise/drop (discrete method). Two pipe-in-pipe heat exchangers at two ends of the regenerator were treated using ε-NTU method. The commercially available compounds of LaFe13-x-yCoxSiy as well as hypothetical compounds of Gadolinium were considered as the magnetocaloric materials (MCMs) with different Curie temperatures. The predicted results of the present work for parallel-plate regenerators employing different compounds of LaFe13-x-yCoxSiy were broadly in good agreement with the available experimental data. The cooling capacity increases as the number of MCMs increase. However, for a given length of regenerator, an optimum number of MCMs was seen yielding the maximum performance of the refrigerator. For a given number of MCMs, a smaller Curie temperature difference ΔTCu between the MCMs was found to give higher performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.