Abstract

In the current study, an attempt was made to investigate the performance of two-tiered mechanically stabilized earth walls (T-TMSEWs) under static footing loading using reduced-scale model tests. For this purpose, twenty-four T-TMSEW models were constructed with three different types of reinforcement (metal strips, geogrid and geostraps) and were loaded using the rotatable and non-rotatable strip footings in different distances to the wall crest. Findings indicated that, although decreasing the reinforcement stiffness and the soil-reinforcement interaction reduces the ultimate bearing capacity of footings, the use of extensible reinforcements with low pull-out capacity and allowing the footing to tilt can be two effective solutions in T-TMSEWs to minimize deformations of backfill surface and connection loads as well as lateral pressures. It was observed that the use of a two-tiered configuration in MSE walls and also reducing tensile stiffness and soil-reinforcement interaction simultaneously, not only lead to change in the slip surface geometry but also prevent the development of deep slip surfaces in the lower tier. On the other hand, increasing the footing distance to the wall crest in the range of reinforced zone was found to be another influential solution to improve the bearing capacity, reduce wall deformations and also minimize lateral pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.