Abstract
This paper considers the Space Time Adaptive Processing (STAP) problem where the disturbance is modeled as the sum of a Low-Rank (LR) Spherically Invariant Random Vector (SIRV) clutter and a zero-mean white Gaussian noise. To derive our adaptive LR-STAP filters, the estimation of the projector onto the clutter subspace is performed from the Sample Covariance Matrix (SCM) and the Normalized Sample Covariance Matrix (NSCM). We compute the theoretical performance of both corresponding LR-STAP filters through the analysis of the Signal to Interference plus Noise Ratio (SINR) Loss, based on a perturbation analysis. Numerical simulations validate the theoretical formula and allow to show that the LR-STAP filter built from the SCM performance does not depend on the heterogeneity of the SIRV clutter whereas the LR-STAP filter built from the NSCM performance does.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.