Abstract

In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.