Abstract
Planning the future blood collection efforts must be based on adequate forecasts of transfusion demand. In this study, univariate time-series methods were investigated for their performance in forecasting the monthly demand for RBCs at one tertiary-care, university hospital. Three time-series methods were investigated: autoregressive integrated moving average (ARIMA), the Holt-Winters family of exponential smoothing models, and one neural-network-based method. The time series consisted of the monthly demand for RBCs from January 1988 to December 2002 and was divided into two segments: the older one was used to fit or train the models, and the younger to test for the accuracy of predictions. Performance was compared across forecasting methods by calculating goodness-of-fit statistics, the percentage of months in which forecast-based supply would have met the RBC demand (coverage rate), and the outdate rate. The RBC transfusion series was best fitted by a seasonal ARIMA(0,1,1)(0,1,1)(12) model. Over 1-year time horizons, forecasts generated by ARIMA or exponential smoothing laid within the +/- 10 percent interval of the real RBC demand in 79 percent of months (62% in the case of neural networks). The coverage rate for the three methods was 89, 91, and 86 percent, respectively. Over 2-year time horizons, exponential smoothing largely outperformed the other methods. Predictions by exponential smoothing laid within the +/- 10 percent interval of real values in 75 percent of the 24 forecasted months, and the coverage rate was 87 percent. Over 1-year time horizons, predictions of RBC demand generated by ARIMA or exponential smoothing are accurate enough to be of help in the planning of blood collection efforts. For longer time horizons, exponential smoothing outperforms the other forecasting methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.