Abstract
This paper examines analytically the design criteria for the composite retrofit of reinforced concrete (RC) columns with a short lap splice length of steel rebars inside the critical region. The advanced potential of pseudo-dynamic three-dimensional (3D) finite element (FE) modelling is utilized to investigate critical design parameters for the required carbon fiber-reinforced polymer (FRP) jacketing of RC columns with a rectangular cross-section based on the experimental lateral force-to-drift envelope behavior of characteristic cases from the international literature. The satisfactory analytical reproduction of the experimental results allows for the systematic numerical investigation of the developed stress along the lap splice length. The maximum lateral force and the horizontal displacement ductility of the column, as well as the maximum developed tensile axial force on the longitudinal bars, their variation along the lap, the bar yielding, and the plastic hinge length variation, are considered to determine the seismic behavior of the columns. For the first time, cases of smooth bar slip together with delayed bar yielding or without bar yielding are identified that may be recorded through a “ductile” P-d seismic response. Such pseudo-ductile response cases are revisited through suitably revised redesign criteria for adequate FRP jacketing.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have