Abstract

Jean laundering generates significant effluent flows with a high organic load, color, and other pollutants, making it difficult to adjust effluent releases within legal limits. Slow Sand Filters (SSF) with downflow were tested for seven days (bench scale), to propose an after-treatment of effluents from an Effluent Treatment Plant of a jean laundry. The research evaluated the removal of the following parameters: color, turbidity, chemical and biochemical oxygen demand, conductivity, ammonia, total phosphorus and salinity of the textile effluent. The experimental apparatus had four SSF: the first filter was fed with distilled water, while the other three filters (triplicates) were fed with effluent. The filters had, on average, the following removal efficiencies: 91% for ammonia, 61.24% color, 89.43% turbidity, and 83.54% for phosphorus. Regarding the removal of organic matter, 98.11% for BOD and 81.17% for COD, demonstrating that SSFs were efficient in removing particulate, dissolved materials and organic matter.

Highlights

  • The Brazilian semiarid is characterized as a region of low water availability (Rocha and Soares, 2015)

  • Regarding the dissolved oxygen concentration, the filters were able to aerate between the rest period of each slow filter and were able to be used for irrigation

  • The average color and turbidity reduction shows that the filters were efficient in removing particulates, dissolved materials, and organic matter, promoting the use of reused water in fertigation practices, performed through drip systems, which did not present clogging problems

Read more

Summary

Introduction

The Brazilian semiarid is characterized as a region of low water availability (Rocha and Soares, 2015). According to Abreu et al (2008), due to the water scarcity in the area and the lack of adequate effluent treatment systems, the implementation of the textile industry imposes a severe environmental and health risk for the surrounding community, mainly due to the mutagenic and carcinogenic nature of dyes and their intermediate byproducts (sludge and textile effluents). These constituents produce a final effluent with high COD, BOD, total dissolved solids, color, and heavy metals (Chandanshive et al, 2017). This can result in chronic nutrient accumulation leading to artificial eutrophication, promoting change in the water color and exposing aquatic life to toxic substances (Esteves and Meirelles-Pereira, 2011)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call