Abstract

A hybrid solar cell composed of a crystalline semiconductor and polymer film has attracted much attention due to numerous advantages, such as high mobility, long lifetime, and the aqueous solution processing. Recently, the power conversion efficiency (PCE) of the hybrid solar cell of silicon (Si) wafer and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is reported to be higher than that of a commercial amorphous Si solar cell. Here in the Si/PEDOT:PSS hybrid solar cell was prepared using dimethyl sulfoxide (DMSO) as an additive to the PEDOT:PSS solution. The PCE was increased up to 10-fold by the addition of DMSO at a concentration of 5 wt%. Results from grazing-incidence X-ray diffraction, atomic force microscopy, and Raman spectroscopy indicated the 10-fold enhancement was controlled by the nanostructure of the PEDOT:PSS film. The enhanced performance was attributed to (i) an increase of π–π stacking, (ii) shortened distances between π–π planes, (iii) an increase in the quinoid stru...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.