Abstract

Two monomethyl esters of alpha-(1-4)-linked D-galacturonic dimers and three monomethyl esters of alpha-(1-4)-linked D-galacturonic acid trimers were synthesized chemically and further used as substrates in order to establish the substrate specificity of six different endopolygalacturonases from Aspergillus niger, one exopolygalacturonase from Aspergillus tubingensis, and four selected Erwinia chrysanthemi pectinases; exopolygalacturonan hydrolase X (PehX), exopolygalacturonate lyase X (PelX), exopectate lyase W (PelW), and oligogalacturonan lyase (Ogl). All A. niger endopolygalacturonases (PGs) were unable to hydrolyze the two monomethyldigalacturonates and 2-methyltrigalacturonate, whereas 1-methyltrigalacturonate was only cleaved by PGI, PGII, and PGB albeit at an extremely low rate. The hydrolysis of 3-methyltrigalacturonate into 2-methyldigalacturonate and galacturonate by all endopolygalacturonases demonstrates that these enzymes can accommodate a methylgalacturonate at subsite -2. The A. tubingensis exopolygalacturonase hydrolyzed the monomethyl-esterified digalacturonates and trigalacturonates although at lower rates than for the corresponding oligogalacturonates. 1-Methyltrigalacturonate was hydrolyzed at the same rate as trigalacturonate which demonstrates that the presence of a methyl ester at the third galacturonic acid from the nonreducing end does not have any effect on the performance of exopolygalacturonase. Of the four E. chrysanthemi pectinases, Ogl was the only enzyme able to cleave digalacturonate, whereas all four enzymes cleaved trigalacturonate. Ogl does not cleave monomethyl-esterified digalacturonate and trigalacturonate in case the second galacturonic acid residue from the reducing end is methyl-esterified. PehX did not hydrolyze any of the monomethyl-esterified trigalacturonates. The two lyases, PelX and PelW, were both only able to cleave 1-methyltrigalacturonate into Delta4,5-unsaturated 1-methyldigalacturonate and galacturonate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.