Abstract

This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, and particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call