Abstract

Wave-driven desalination systems are proposed water treatment systems that involve reverse osmosis of seawater powered directly by wave motion. Such a configuration would result in drastic feed pressure fluctuations. For a technology conventionally operated with a constant feed condition, the effect of these variable pressures on membrane integrity and performance is unknown. Experiments were conducted with spiral wound membranes coupled to a system capable of producing feed pressure fluctuations of more than 400 psi. Feed composition included 5, 20, and 35 g/L NaCl, and a synthetic seawater at normal and 1.5× concentration. The variable feed conditions included sine-like pressure waves swings of 200–500 and 500–900 psi with frequencies of 1.25, 7.5, and 12 waves/min, and a model-generated random waveform. Between each wave experiment we performed membrane integrity tests at 650 psi and 25 g/L NaCl feed, which showed a 7.4% drop in the membrane's water permeability coefficient, an 18.4% flux decline, and more than 99% salt rejection over 1770 h of cumulative experimental time. Analysis of permeate samples showed high salt rejection. In general, variable feed pressure had no significant deleterious effect on membrane integrity or performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.