Abstract

A thorough study of the literature indicated that there is not much relevant research on the application of GFRP gratings. Otherwise, extensive study has been done on FRP bars, laminates, sheets, strips, and rods. This study proposes a novel approach to improve the punching shear resistance of flat slab column connections by inserting GFRP gratings across the slab thickness. The results of seven specimens tested under vertical static loading are presented, considering the influence of the grating’s characteristics. All specimens were tested as simply supported slabs under one point of static loading. Experimental results, including crack patterns, slab deflection, concrete compressive strain, tensile steel strain, GFRP grating strain, and failure load, were recorded using extensive electric instrumentation. Test results revealed an enhancement in the failure load ranging between 9.03% and 27.67% for the specimens provided with the GFRP grating. In addition, a nonlinear finite element numerical model analysis was carried out using the ANSYS 15 program. Correlational studies based on the load-deflection response and crack patterns were utilized, resulting in a good agreement between numerical simulations and experimental results with differences ranging from 1.0% to 8.0%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call