Abstract
Abstract The search for precipitation quality control (QC) methods has proven difficult. The high spatial and temporal variability associated with precipitation data causes high uncertainty and edge creep when regression-based approaches are applied. Precipitation frequency distributions are generally skewed rather than normally distributed. The commonly assumed normal distribution in QC methods is not a good representation of the actual distribution of precipitation and is inefficient in identifying the outliers. This paper first explores the use of a single gamma distribution, fit to all precipitation data, in a quality assurance test. A second test, the multiple intervals gamma distribution (MIGD) method, is introduced. It assumes that meteorological conditions that produce a certain range in average precipitation at surrounding stations will produce a predictable range at the target station. The MIGD bins the average of precipitation at neighboring stations; then, for the events in a specific bin, an associated gamma distribution is derived by fit to the same events at the target station. The new gamma distributions can then be used to establish the threshold for QC according to the user-selected probability of exceedance. This paper also explores a test (Q test) for precipitation, which uses a metric based on comparisons with neighboring stations. The performance of the three approaches is evaluated by assessing the fraction of “known” errors that can be identified in a seeded error dataset. The single gamma distribution and Q-test approach were found to be relatively efficient at identifying extreme precipitation values as potential outliers. However, the MIGD method outperforms the other two QC methods. This method identifies more seeded errors and results in fewer type I errors than the other methods. It will be adopted in the Applied Climatic Information System (ACIS) for precipitation quality control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.