Abstract
Radical formation through hydrogen abstraction and C-C and O-O homolytic bond cleavage from selected molecules is investigated by use of natural orbital functional theory in its PNOF5 natural orbital functional implementation, and the results are compared to high-level ab initio complete active space self-consistent field (CASSCF) and complete active space with second-order perturbation theory (CASPT2) methods and experimental data. It is observed that PNOF5 is able to treat the strong electron correlation effects along the homolysis of X-H (X = C, N, O) and X-X (X = C, O) bonds, leading, in general, to the correct trends in the corresponding bond strengths and a good description of the resultant electronic structure for these radicals. In general, PNOF5 bond energies are lower than the experimental ones, because of partial lack of dynamical electron correlation. However, the part of dynamical electron correlation recovered by PNOF5 allows it to give more accurate results than CASSCF methods with a minimum window required to treat near-degeneracy effects. In addition, inspection of the natural orbital occupancies with respect to the CASSCF ones shows an outstanding performance of PNOF5 in treating degenerate and quasidegenerate states, giving a correct description of diradicals and diradicaloids formed upon C-C cleavage in cyclopropane and derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.