Abstract

Morphometric dissimilarity metrics aim to quantify the variation between compared specimens such that inferences about their relatedness and alpha taxonomy can be made. Recently, the technique has developed metrics that purport to quantify shape dissimilarity between specimens-employing the use of least squares regression analysis. These metrics have been well applied by studies in the hominin fossil record with an arguably unsubstantiated backing for the technique. Originally postulated was the log10 sem metric which subsequently led to the standard error test of the null hypothesis metric. Following this, the standard deviation of logged ratios (SLR ) metric arose as a pairwise dissimilarity metric that constrains the regression to a zero-intercept, that is, a significant development in the robustness of the technique. This metric was tested on extant primates in order to evaluate its effectiveness alongside the two other metrics. It was shown to be the most reliable for comparisons between specimens of primates, but was unable to discriminate between heterospecific and conspecific comparisons. Arguably, an alternative model organism with which to compare the technique is lacking. This study considers shape dissimilarity metrics with respect to a group of nonmammalian organisms (mantidflies) and tests the metrics against three lines of evidence (morphology, CO1-DNA, and geographic distribution) that can delimit the species-level taxonomy for the group. It is shown that the metrics are unable to discriminate between pairwise comparisons of closely related species, resulting in biologically erroneous groupings, and contradicting the groupings derived from morphological, CO1-DNA, and distributional comparisons. It is thus asserted that the technique is unsuitable for use in alpha taxonomy as an additional line of evidence in mantidflies. It is further supposed that morphometrics in general should be employed with caution in studies of evolutionary history as phylogeny is not the only information contained within morphometric data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.