Abstract
ABSTRACTA novel wastewater treatment process, known as an alternating activated sludge reactor (AASR), is proposed to treat wastewater in full-scale operations. The AASR is a technical development based on the sequencing batch reactor (SBR) and cyclic activated sludge technology (CAST). The performance of AASR was evaluated in this study and found to be effective for the removal of pollutants. The average effluent NH4+-N, TN, TP, and COD concentrations were 0.5, 17, 0.8, and 40 mgL−1, respectively. The corresponding average removal efficiencies were 97%, 59%, 83%, and 83%, respectively, indicating that the AASR was also a successful operating system for the removal of organic matter. The AASR has many advantages, such as successive filling, high removal efficiency, high stability and reliability, low area requirement, no sludge circulation reflux, and low construction costs. The operation mode of the alternating anoxic, anaerobic, and aerobic conditions displayed a higher efficiency for nitrification than that of conventional SBR. The effective mode for denitrification was a step-feed. The control program of the AASR is highly flexible and can easily be modified by a plant manager to meet various loading requirements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have