Abstract

Energy harvesting is one of the emerging applications of piezoelectric materials. In order to replace conventional lead-based materials with lead-free materials, it is important to evaluate their performance for such applications. In the present study, finite element method-based simulation shows mean power density produced from ( K0.475Na0.475Li0.05)( Nb0.92Ta0.05Sb0.03) O3add with 0.4 wt.% CeO2and 0.4 wt.% MnO2(KNLNTS) bimorph is 96.64% of lead zirconate titanate ( Pb [ ZrxTi1-x] O3) (PZT) ceramics. Load resistance (R), length of proof mass (Lm) and thickness of host layer (th) are optimized (using genetic algorithm) for maximum power density and tuning the operating frequency range which is near to natural frequency of the structure. The lead-free piezoelectric material KNLNTS has comparable results to that of PZT for piezoelectric energy harvester in the ambient frequency range of 90 Hz to 110 Hz. Results show that KNLNTS ceramics can be potentially used in energy harvesting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.