Abstract

This paper presents the design of a shunt Active Power Filter (SAPF) for grid-connected photovoltaic systems. The proposed system injects PV power into the grid, by feeding the SAPF; to eliminate harmonics currents and compensate reactive power produced by nonlinear loads. To inject the photovoltaic power to the grid we use a boost converter controlled by a Fuzzy logic (FLC) algorithm for maximum power point tracking (MPPT). The SAPF system is based on a two-level voltage source inverter (VSI); P-Q theory algorithm is used for references harmonic currents extraction. The overall system is designed and developed using MATLAB/Simulink software. Simulation results confirm the performance of the grid-connected photovoltaic system based on SAPF. For the MPPT controller, the results show that the proposed FLC algorithm is fast in finding the MPPT than conventional techniques used for MPPT like perturbed and observed (P&O). The simulated compensation system shows its effectiveness such as the sinusoidal form of the currents and the reactive power compensation. The proposed solution has achieved a low Total Harmonic Distortion (THD), demonstrating the efficiency of the presented method. Also, the results determine the performances of the proposed system and offer future perspectives of renewable energy for power quality improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.