Abstract
This paper proposes a Solar Photovoltaic (SPV) interfaced Impedance Source Inverter (ZSI) based shunt Active Power Filter (APF) for compensation of power quality events such as current harmonics, voltage interruption and reactive power burden. The instantaneous reactive power theories with Fuzzy Logic Controller (FLC) based DC link voltage regulator is used to estimate the reference current signal and control the operation of the SPV interfaced shunt APF. Maximum Power Point Tracking (MPPT) algorithm is also employed to obtain the optimum maximum power point. The response of the SPV interfaced ZSI-shunt APF for mitigation of current harmonic distortions and reactive power compensation are investigated and compared with SPV interfaced Voltage Source Inverter (VSI) based shunt APF. The proposed SPV interfaced shunt APF employed with the FLC-based instantaneous reactive power theory control algorithm offers long lasting compensation against current-based distortions and reactive power requirements. The performance of the SPV interfaced ZSI based shunt APF has been verified by the simulation and experimental study. These results confirm the practicability of the proposed system in various load conditions with effective harmonic mitigation capability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have