Abstract

In the absence of an affordable and deployable energy storage option, the intermittency of renewable energy creates mismatches in supply and demand that limit the viability of a low-carbon electricity grid. High temperature electrically-heated thermal energy storage (E-TES) is a largely unexplored approach to alleviating the problem of low-value renewable energy. Evaluated herein is one E-TES concept, called Firebrick Resistance-Heated Energy Storage (FIRES), that stores electricity as sensible high-temperature heat (1000–1700 °C) in ceramic firebrick, and discharges it as a hot airstream to either (1) heat industrial plants in place of fossil fuels, or (2) regenerate electricity in a power plant. FIRES storage media and heater options are reviewed, and discharge cycling is simulated with Crank-Nicolson finite difference schemes and evaluated over the parameter design space. We report that systems of 100–1000 s MWh may be cycled daily, and discharged at a constant heat rate typically for 70–90% of the storage capacity. Traditional insulation can reasonably limit heat leakage to less than 3% per day. Preliminary cost estimates indicate a system cost near $10/kWh, substantially less expensive than batteries. Northwestern Iowa market analysis shows payback within 2 years and economic profitability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.