Abstract
The current numerical investigation is used to predict the dynamic performance of finite bearing considering the combined influence of turbulence regime and non-Newtonian flow. With appropriate assumptions, the Navier–Stokes and continuity equation have been revised by the linear turbulence and non-Newtonian fluid model together. The clearance space of the finite bearing has been determined by the finite element method adopting Galerkin’s procedure and robust iteration technique. The cylindrical coordinate forms of momentum and continuity equations are used for the flow field of the finite bearing assuming the turbulent regime and non-Newtonian lubricant. Dynamic performance parameters of a finite bearing have been computed regarding direct and cross-coupled fluid-film coefficients, equivalent stiffness coefficient, whirl ratio, and critical mass at different eccentricity ratios for distinct values of Reynolds numbers preferably up to 13,300 and varied values of non-linear factor of the non-Newtonian fluid model. The obtained results revealed the performance enhancement in the combined regime as compared to pure turbulence and non-Newtonian flow conditions. The stability of finite bearing is significantly improved under the proposed severe flow regime.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have