Abstract

This paper presents the performance, in terms of energy and timing resolution, of high-density silicon photomultipliers (SiPMs) produced at Fondazione Bruno Kessler for time-of-flight positron emission tomography application. The new SiPM technology allows us to produce devices with a small cell size maintaining a high fill factor (FF). The sensors considered in this paper are composed by 30 × 30 μm2 cells with a FF exceeding 70% to cover a total area of 4 × 4 mm2. The SiPM performance was evaluated using two types of scintillators (Ce:LYSO and Ce:GaGG) both with a short height (5 mm) in order to minimize the time jitter caused by light propagation in the crystal. With Ce:LYSO, an energy resolution of 9.0% FWHM at 511 keV and a coincidence resolving time (CRT) of 125 ps FWHM were obtained at −20 °C. With Ce:GaGG, an energy resolution of 6.4% FWHM and a CRT of 260 ps FWHM were achieved at the same temperature. The novel SiPM technology, combining a high PDE with a low correlated noise (i.e., crosstalk and afterpulse), allows us to improve the state-of-the-art of energy and timing resolution with both the tested crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.