Abstract

The accuracy and performance of the effective harmonic oscillator approximation for the description of anharmonic vibrational structure calculations are tested for large molecular systems and compared with experimental values along with vibrational self-consistent field and second-order perturbation theories. The effective harmonic oscillator approach is an effective single-particle approximation where the variational parameters are the centroids and widths of the multidimensional Gaussian product functions posited as the vibrational wave functions. A comprehensive calculation for 849 transitions that include the fundamentals, two and three quanta overtone transitions, and several combination bands of three polyaromatic hydrocarbons and one DNA nucleobase with a total of 231 normal modes are assessed. A comparison of EHO results with the experimental values is done for the polyaromatic hydrocarbons, and a close agreement is found between the two results. It also offers anharmonic eigenstates and eigenfunctions that are nearly identical with vibrational self-consistent field theory. An extensive analysis on the resultant wave functions of the excited states is performed. The overall root-mean-square deviation (RMSD) between these two methods for 849 transitions understudy is only about 8.3 cm-1, suggesting the effective harmonic oscillator as a viable alternative for the reliable calculations of transition energies of large molecular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call