Abstract
In this pioneering study, the performance of an eccentrically loaded strip footing on geocell-reinforced sand was assessed with instrumented laboratory model tests in terms of pressure-settlement response, surface displacement profiles, failure mechanisms and ultimate bearing capacity considering load eccentricity, geocell height, geocell material stiffness and the relative density of the soil. The results indicated that strip footings on the geocell-reinforced sand outperformed those on unreinforced soils, with up to a 6.5-fold increase in the bearing capacity and significant improvements in the initial slope of the pressure-settlement curve. Furthermore, the strip footing under centric loading on the geocell-reinforced loose and dense sand exhibited either only punching or local shear failure while load eccentricity on the strip footing could lead to the shear failures including punching, local and general. In this research, both a design chart for predicting failure modes of geocell-reinforced strip footings and a new interpretation method to evaluate ultimate bearing capacity were proposed. Increasing the relative density of the soil and material stiffness enhanced the ultimate bearing capacity of geocell-reinforced strip footings under both centric and eccentric loading conditions, with stiffer materials resulting up to 25% increase. However, increased geocell height had no significant impact on bearing capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.