Abstract

Extensive laboratory model tests have been carried out on a strip footing resting over dry sand bed subjected to eccentrically inclined load to determine the ultimate bearing capacity (Patra et al. in Int J Geotech Eng 6(3):343–352, 2012a. https://doi.org/10.3328/IJGE.2012.06.03.343-352 , Int J Geotech Eng 6(4):507–514, b. https://doi.org/10.3328/IJGE.2012.06.04.507-514 ). Similarly, lower bound calculations based on finite element method were performed to compute the bearing capacity of a strip footing subjected to an eccentric and inclined load lying over a cohesionless soil with varying embedment depth and relative density (Krabbenhoft et al. in Int J Geomech ASCE, 2014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000332 ). The load may be applied in two ways namely, towards the center line and away from the center line of the footing. Based on the results (both experimental and numerical analyses), a neural network model is developed to predict the reduction factor that will be used in computing the ultimate bearing capacity of an eccentrically inclined loaded strip footing. This reduction factor (RF) is the ratio of the ultimate bearing capacity of the footing subjected to an eccentrically inclined load to the ultimate bearing capacity of the footing subjected to a centric vertical load. A thorough sensitivity analysis is carried out to evaluate the parameters affecting the reduction factor. Based on the weights of the developed neural network model, a neural interpretation diagram is developed to find out whether the input parameters have direct or inverse effect on the output. A prediction model equation is framed with the trained weights of the neural network as the model parameters. The predictions from ANN, and those from other approaches, are compared with the results computed from both experimentation and FEM analyses. The ANN model results are found to be more accurate and well matched with other results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.