Abstract

In engineering, there are two primary heat transfer procedures of fluids namely, heating and cooling within a conduit that are well recognized. The heat transfer literacy remains a core component to design the heat exchangers. The study aims to present the consequences of drop shaped pin fin hear exchanger performance with four different fin dimensions. A rectangular duct with different drop-shaped pin fins dimensions is present in the heat exchanger, having similar heat transfer wetted surface area. ANSYS FLUENT 14.5 conducted three-dimensional finite volume to select the optimum pin fin dimension. The numerical results for the four cases L/D 1, 1.25, 1.5 and 1.75 indicated heat transfer had no effect on the variations in pin tail length; however, it affected frictional losses or pressure drop. There is significant decrease in the frictional loss as the result of increase in the pin tail length. The pun fin drop showed significant decrease in friction power, unlike the round pins. The ratio of pin height to the cylindrical portion of the pin (H/D) had major impact on the wetted surface area, which affects the rate of heat transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.