Abstract

The manganese oxide graphene oxide (Mn3O4/rGO) composite heterojunction with copper oxide is useful for the production of an electrochemical supercapacitor. The graphene oxide and manganese oxide composite have been synthesized by adopting a method of co-precipitation. The composite of Mn3O4/rGO was synthesized with different concentrations of Mn3O4 and rGO. The structural, morphological, electrochemical and supercapacitive properties of Mn3O4/rGO composite have been examined. The electrochemical and supercapacitive properties have been studied with regard to different substrates. The Mn3O4/rGO composite was deposited on different substrates such as steel, copper and brass. The CuO/Mn3O4/rGO shows relatively better specific capacitance (856 F g−1) and better stability (82% retention after 2000 cycles) than other substrates used. The present work describes the development of cost-effective and high-performance CuO/Mn3O4/rGO-based nanomaterials for supercapacitors. The CuO/Mn3O4/rGO composite can be used as a flexible supercapacitor device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call