Abstract
We describe a method to assess the performance of the third-generation BeiDou navigation satellite system (BDS-3), in terms of satellite visibility and dilution of precision (DOP), on global and regional scales. Different from traditional methods, this method estimates the satellite visibility and DOP without requiring real or simulated ephemerides. Validated by the reference values derived from real ephemerides of GPS and GLONASS, the estimated number of visible satellites achieves an accuracy better than 0.15, and the estimated DOP values are lower than their reference values by less than 10% on average. Applying this method to BDS-3, with a 5° cutoff elevation angle, results show that the geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of BDS-3 together contribute 3–6 visible satellites in the area of 60°S–60°N and 50°E–170°E. In this area, the number of visible BDS-3 satellites is 11–14, which is more than GPS and Galileo by 1–3, and GLONASS by 3–7. With better satellite visibility, the average BDS-3 horizontal, vertical, and time DOPs over this area are 0.74, 1.08, and 0.67, which are, respectively, 5%, 9%, and 3% lower than those of GPS and Galileo, 14%, 16%, and 21% lower than those of GLONASS, and 16%, 19% and 14% lower than those of the 24-MEO-only BDS-3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have