Abstract
We aim to evaluate the performance of radiomic biopsy (RB), best-fit bounding box (BB), and a deep-learning-based segmentation method called no-new-U-Net (nnU-Net), compared to the standard full manual (FM) segmentation method for predicting benign and malignant lung nodules using a computed tomography (CT) radiomic machine learning model. A total of 188 CT scans of lung nodules from 2 institutions were used for our study. One radiologist identified and delineated all 188 lung nodules, whereas a second radiologist segmented a subset () of these nodules. Both radiologists employed FM and RB segmentation methods. BB segmentations were generated computationally from the FM segmentations. The nnU-Net, a deep-learning-based segmentation method, performed automatic nodule detection and segmentation. The time radiologists took to perform segmentations was recorded. Radiomic features were extracted from each segmentation method, and models to predict benign and malignant lung nodules were developed. The Kruskal-Wallis and DeLong tests were used to compare segmentation times and areas under the curve (AUC), respectively. For the delineation of the FM, RB, and BB segmentations, the two radiologists required a median time (IQR) of 113 (54 to 251.5), 21 (9.25 to 38), and 16 (12 to 64.25) s, respectively (). In dataset 1, the mean AUC (95% CI) of the FM, RB, BB, and nnU-Net model were 0.964 (0.96 to 0.968), 0.985 (0.983 to 0.987), 0.961 (0.956 to 0.965), and 0.878 (0.869 to 0.888). In dataset 2, the mean AUC (95% CI) of the FM, RB, BB, and nnU-Net model were 0.717 (0.705 to 0.729), 0.919 (0.913 to 0.924), 0.699 (0.687 to 0.711), and 0.644 (0.632 to 0.657). Radiomic biopsy-based models outperformed FM and BB models in prediction of benign and malignant lung nodules in two independent datasets while deep-learning segmentation-based models performed similarly to FM and BB. RB could be a more efficient segmentation method, but further validation is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.