Abstract

The performance of a hydrogen storage prototype loaded with AB5H6 hydride, whose equilibrium pressure makes it suitable for both feeding a H2/air proton exchange membrane (PEM) fuel cell and being charged directly from a low-pressure water electrolyzer, interacting thermally with the fuel cell exhaust air, is reported. The nominal 70 L hydrogen storage capacity of the prototype suffices for hydrogen delivery at 0.5 L min−1, which allows a power supply of 50 W for 140 min from the H2/air fuel cell in the absence of thermal interaction. The storage prototype was characterized by monitoring the internal pressure and the temperatures of the external wall and at the center inside the container at different hydrogen discharge conditions. The responses of the integrated system after either immersing the metal hydride container in air or exposing it to the fuel cell hot exhaust air stream under forced convection were compared. The system shows the best performance when the heat generated at the fuel cell is used to increase the metal hydride container temperature, allowing the operation of the fuel cell at 280 W for 16 min at a high hydrogen flow rate of 4 L min−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.