Abstract
A spatio-temporal matched filter receiver for direct-sequence spread-spectrum multiple-access (DS/SSMA) communications with aperiodic random quadriphase spreading sequences is derived, and the system performance is analyzed. It is shown with the method of characteristic functions that the cross-correlation coefficients between the desired user's and the interfering users' spreading sequences tend, in distribution, to independently and identically distributed circularly symmetric complex Gaussian random variables as the processing gain goes to infinity. Based on this Gaussian approximation, the structure of the spatio-temporal matched filter receiver is derived and a bit error rate formula is obtained. Using Monte-Carlo simulations, as well as analytical methods, it is shown that the spatio-temporal matched filter receiver achieves a significant performance improvement over the conventional, temporal, and spatial matched filter receivers by effectively suppressing the multiple access interference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have