Abstract

This study presents an experimental investigation on the magnetorheological effect of a new magnetorheological elastomer–based adaptive bridge isolation bearing system. Two identical magnetorheological elastomer–based adaptive bridge bearings (isolators) were designed and fabricated. Electromagnets were incorporated to create a closed-loop magnetic path in the magnetorheological elastomer layers. A double-lap shear and compression test setup was utilized to characterize the mechanical properties of the system subjected to scaled structural cyclic forces and strains. Experimental results demonstrated that the effective stiffness of adaptive bridge bearings increases with increased applied magnetic field and a compressive force resulted in larger apparent shear stiffness. Also, increasing loading frequency resulted in larger apparent shear stiffness and lower magnetorheological effect and similarly, however, a compressive force resulted in smaller magnetorheological effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.