Abstract
Biological treatment processes used to remove and degrade volatile organic compounds (VOCs) from contaminated gases emitted by industrial operations or waste treatment processes are almost always subjected to transient loading conditions because of the inherently unsteady-state nature of contaminant generating processes. In the study presented here, a laboratory-scale biofilter populated by a mixed culture of fungi was used to study the transient response to various periods of no contaminant loading in a system treating a model waste gas stream containing a mixture of commonly used solvents. The biofilter, packed with cubed polyurethane foam media and operated with an empty bed residence time of 15 s, was supplied with a four-component mixture of n-butyl acetate, methyl ethyl ketone, methyl propyl ketone, and toluene at target influent concentrations of 124, 50.5, 174, and 44.6 mg/m 3, respectively. This corresponds to a total VOC loading rate of 94.3 g/(m 3 h). Biofilter performance was evaluated over a 94-day period for three loading conditions intended to simulate processes generating contaminated gases only during daytime operation, daytime operation with weekend shutdown periods, and with long term (9-day) shutdown. Results indicate that fungal biofilters can be an effective alternative to conventional abatement technologies for treating solvent contaminated off-gases even under discontinuous loading conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.