Abstract

The foot-and-mouth disease virus (FMDV) is a member of the picornavirus family, possessing an 8-kb single-stranded RNA genome of positive polarity. It is highly contagious among several livestock species and can lead to severe economic consequences, as evidenced by the UK outbreak in 2001. The usage of real-time polymerase chain reaction has facilitated rapid detection of FMDV. Several real-time PCR instruments are available with various capabilities, such as portability and high sample volume analysis. Primers and a dual-labeled TaqMan probe were optimized to detect a single, highly conserved 88-bp segment of the FMDV 3D (RNA polymerase) gene. To increase the confidence of the RT-PCR result, a positive amplification control was synthesized to detect potential false-positive results due to contamination if a wild-type virus is used as positive control. In addition, a preventative measure against false-negative results was developed in which endogenous beta actin mRNA is coamplified by RT-PCR. Assay performance was compared on the LightCycler1.2 (Roche), the SmartCyclerII (Cepheid), and the SDS 7900HT (ABI). These assays successfully identified the FMDV genome and beta actin mRNA from several sources of infected nasal and oral swabs, as well as probang samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call