Abstract

BackgroundFoot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better understand the epidemiology of FMD at the livestock-wildlife-interface, samples were collected from young, unvaccinated cattle from 24 pastoral herds that closely interact with wildlife around Queen Elizabeth National Park in Uganda, and analysed for evidence of FMDV infection.ResultsIn total, 37 (15 %) of 247 serum samples had detectable antibodies against FMDV non-structural proteins (NSPs) using a pan-serotypic assay. Within these 37 sera, antibody titres ≥ 80 against the structural proteins of serotypes O, SAT 1, SAT 2 and SAT 3 were detected by ELISA in 5, 7, 4 and 3 samples, respectively, while neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses are distinct from previous cattle and buffalo SAT 1 FMDV isolates obtained from the same area (19–30 % nucleotide difference) and from the vaccine strain (TAN/155/71) used within Uganda (26 % nucleotide difference). Eight herds had only one or a few animals with antibodies against FMDV NSPs while six herds had more substantial evidence of prior infection with FMDV. There was no evidence for exposure to FMDV in the other ten herds.ConclusionsThe two identical SAT 1 FMDV VP1 sequences are distinct from former buffalo and cattle isolates from the same area, thus, transmission between buffalo and cattle was not demonstrated. These new SAT 1 FMDV isolates differed significantly from the vaccine strain used to control Ugandan FMD outbreaks, indicating a need for vaccine matching studies. Only six herds had clear serological evidence for exposure to O and SAT 1 FMDV. Scattered presence of antibodies against FMDV in other herds may be due to the occasional introduction of animals to the area or maternal antibodies from past infection and/or vaccination.The evidence for asymptomatic FMDV infection has implications for disease control strategies in the area since this obstructs early disease detection that is based on clinical signs in FMDV infected animals.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-015-0616-1) contains supplementary material, which is available to authorized users.

Highlights

  • Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used

  • Serology In total, 37 of 247 sera collected from 24 herds in Nyakatonzi and Katwe Kabatooro subcounties tested positive for antibodies against the Non-Structural Proteins (NSP) of FMD viruses (FMDV) (Table 2) giving an overall antibody prevalence of 15 % with herd antibody prevalences ranging from 0 to 60 % (median 11 %; Inter Quartile Range (IQR) 0–26 %)

  • Screening of the 37 anti-NSP antibody positive samples in Solid phase blocking ELISA (SPBE) resulted in 17, 4, 2, 0, 20, 13 and 16 samples being scored positive for antibodies against serotypes O, A, C, Asia 1, Southern African Territories (SAT) 1, SAT 2 and SAT 3, respectively, while 12 anti-NSP positive samples were negative in all SPBEs (Table 2; data not shown for the testing of antibodies against serotypes A, C and Asia 1)

Read more

Summary

Introduction

Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. It is known to cause substantial economic losses, directly from the effect of the virus on animal health and indirectly through control efforts including quarantines and trade restrictions [2]. The disease is caused by infection with a single stranded, positive sense, RNA virus (FMDV) belonging to the genus Aphthovirus within the family Picornaviridae. This virus occurs in seven distinct serotypes namely: O, A, C, Asia 1, SAT 1, SAT 2 and SAT 3, each having multiple strains [3, 4]. Incursions of SAT 1 into the Middle East (1961–1965 & 1970), and SAT 2 into Saudi Arabia (2000), Libya (2003) and more recently into Egypt and Libya (2012) have been reported [7, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call