Abstract

We have designed a 5×5 mm 2 position sensitive solid-state photomultiplier (PS-SSPM) using a complementary metal-oxide-semiconductor (CMOS) process that provides imaging capability on the micro-pixel level. The PS-SSPM has 11,664 micro-pixels total, with each having an active area and micro-pixel pitch of 30×30 μm 2 and 44.3 μm, respectively. The PS-SSPM was then examined for its performance characteristics such as its energy and spatial resolution, and LYSO scintillator array imaging capabilities. When coupled to 5×5×3 mm 3 LYSO, the energy resolution at 511 keV ( 22 Na) was measured as a function of bias, and corrected for the PS-SSPM non-linear output. The resolution is 14% (FWHM) at 511 keV with 30 V bias. The LYSO coincidence timing resolution was 9.4 ns (FWHM) at 511 keV. Spatial resolution studies were conducted using a focused (∼30 μm beam spot diameter) pulsed 635 nm diode laser . Scintillator array imaging studies were conducted at 511 keV using a 6×6 LYSO array, having 500 μm pixels (530 μm pitch) and 5 mm tall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.