Abstract
The use of an alternating current (AC) voltage is a simple, versatile method of producing electroluminescence from generic emissive materials without the need for contact engineering. Recently, it was shown that AC-driven, capacitive electroluminescent devices with carbon nanotube network contacts can be used to generate and study electroluminescence from a variety of molecular materials emitting in the infrared-to-ultraviolet range. Here, performance trade-offs in these devices are studied through comprehensive device simulations and illustrative experiments, enhancing understanding of the mechanism and capability of electroluminescent devices based on alternating as opposed to direct current (DC) schemes. AC-driven electroluminescent devices can overcome several limitations of conventional DC-driven electroluminescent devices, including the requirement for proper alignment of material energy levels and the need to process emitting materials into uniform thin films. By simultaneously optimizing device geometry, driving parameters, and material characteristics, the performance of these devices can be tuned. Importantly, the turn-on voltage of AC-driven electroluminescent devices approaches the bandgap of the emitting material as the gate oxide thickness is scaled, and internally efficient electroluminescence can be achieved using low-mobility single-layer emitter films with varying thicknesses and energy barrier heights relative to the contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.