Abstract
The red emission organic material Eu(coumarin)3·2H2O complex was synthesized and its morphology, energy level alignment and luminescence characteristics were studied by using scanning electron microscopy, Fourier transform infrared spectra, cyclic voltammetry and ultraviolet–visible absorption spectra and fluorescence spectra. Eu(coumarin)3·2H2O shows bright red emission originating from Eu3+ ions under 345 nm light excitation. The luminescence lifetime of Eu3+ in this complex is about 580 μs. To improve the quality of Eu(coumarin)3·2H2O thin films, Eu(coumarin)3·2H2O was doped with a poly(N-vinylcarbazole) (PVK) solution. The organic materials 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and aluminum quinoline (Alq3) were used as hole-blocking and electron-transporting layers in our fabricated electroluminescence (EL) devices on indium tin oxide (ITO) substrates, respectively. The EL devices ITO/poly-(3,4-ethylenedioxythiophene):poly-(styrenesulphonic acid) (PEDOT:PSS)/emitting layer (PVK:Eu)/BCP/Alq3/Al were fabricated, and EL spectra were measured under different driving voltages. There is one emission peaking at 490 nm in addition to the characteristic emission peaks of Eu3+, which should be attributed to the spectral overlap between the PVK emission and electroplex emission originating from PVK and BCP interfaces. This explanation can be positively supported by the dependence of the EL spectral variation of ITO/ PVK/BCP/Alq3/Al devices on the driving voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.