Abstract

For the management of rotating machines, machine learning (ML) has been researched with the use of feature parameters that have physical and statistical meanings of vibration signals. Genetic algorithm (GA) and principal component analysis (PCA) are the algorithms used for the selection or extraction process of the features; equipment condition. This study proposes a new method to maximize the advantages of the extraction and selection algorithms, thereby improving the fault classification performance. The proposed method is estimated in a variety of equipment conditions by selecting and extracting the effective features for status classification. To evaluate the performance of the fault classification through feature selection and extraction of the ML, a comparative analysis with the proposed method and the original method is also performed. With Lab-scale gearbox, several types of fault tests are conducted, and seven different fault types of equipment conditions, including the normal status, are simulated. The results of the experiments show that, the performance of classification of GA for feature selection is 85%, while PCA for feature extraction is 53%. The performance result of the proposed method for fault classification is 95%, meaning that the performance of fault diagnosis is more efficient in terms of discriminative learning than the original method. Therefore, the proposed method with feature extraction and selection algorithm can improve the fault classification performance by 10% and more for fault diagnosis through ML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.