Abstract

ABSTRACT To gain a comprehensive understanding of the energy dissipation of a double-suction pump, analysing the energy loss of its various components is necessary. However, the liquid temperature in the double-suction pump remains almost constant, using the entropy production or dissipation method to evaluate energy loss is difficult. The traditional analysis method based on pressure drop cannot quantify the internal energy changes in each component. To solve this problem, a pressure energy loss evaluation approach is developed on the basis of the pressure drop theoretical analysis and numerical prediction, and the effects of cavitation on the energy loss are investigated. The structure of the volute casing is improved to enhance the performance based on energy loss analysis and cavitation behaviour prediction. The results show that the energy loss efficiencies for the suction casing, impeller, and volute casing are 0.55, 4.6, and 5%, respectively, at the design flow rate. The proportion of energy loss in the impeller and volute casing increased with a decrease in NPSHa. The RNG k–ε and k–ω turbulence models are chosen for the numerical simulation, and the numerically predicted results are verified experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.