Abstract

We design a novel GeSn-based heterojunction-enhanced p-channel tunneling field-effect transistor (HE-PTFET) with a Ge0.92Sn0.08/Ge heterojunction located in channel region, at a distance of LT–H from the Ge0.92Sn0.08 source-channel tunneling junction (TJ). HE-PTFETs demonstrate the negative shift of onset voltage VONSET, the steeper subthreshold swing S, and the improved on-state current ION compared to Ge0.92Sn0.08 homo-PTFET. At low VGS, the suppression of BTBT due to the widening of the tunneling barrier caused by the heterojunction leads to a negative shift of VONSET in HE-PTFETs. At high VGS, ION enhancement in HE-PTFETs is achieved over the homo device, which is attributed to the confinement of BTBT in Ge0.92Sn0.08 source-channel TJ region by the heterojunction, where the short tunneling paths lead to a high tunneling probability. Due to the steeper average S, HE-PTFET with a 6nm LT–H achieves a 4times higher ION compared to homo device at a VDD of −0.3V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.