Abstract

The use of an open-graded friction course (OGFC) as a road surface demonstrates significant advantages in reducing driving noise and improving road drainage and safety. This study aims to enhance the overall performance of OGFC-13 by incorporating double-adding fiber technology. Laboratory tests were conducted on six OGFC-13 mixes modified with varying fiber ratios of lignin fibers (LFs) and glass fibers (GFs). Both GF and LF significantly improved high-temperature performance, with dynamic stability values increasing proportionally to GF content. The LF:GF = 0.15:0.15 ratio achieved peak shearing strength, demonstrating better improvement over single-fiber modification. Furthermore, both fibers effectively enhanced resistance to cracking, with GF-reinforced specimens excelling in bending stress and LF-reinforced specimens demonstrating the highest flexural strain. Water stability evaluations highlighted the substantial positive impact of LF and GF, with simultaneous addition resulting in superior moisture stability compared to single-fiber modifications. Anti-stripping performance assessments indicated that the LF:GF = 3:0 ratio exhibited the best performance. In fatigue performance, both LF and GF enhanced fatigue life, with GF outperforming LF. The LF:GF = 0.15:0.15 ratio achieved a balanced fatigue performance. Results from the radar evaluation method underscored a more comprehensive improvement in road performance achieved through double-adding technology. The LF:GF = 0.15:0.15 ratio emerged as the optimal choice for overall road performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call