Abstract

In this work, the authors present the evaluation of energy detection (ED) based on the Welch's periodogram for spectrum sensing applied to cognitive radio networks. The authors analyse the impact of the number of points in the discrete Fourier transform and the number of averaged periodograms for power density spectrum estimation on the performance of ED. The authors identify that the inclusion of these parameters in the distribution of the test statistic used to detect the presence of primary users, improves the probability of detection. However, in the presence of noise uncertainty, the improvement on the probability of detection will come at the expense of an increased probability of false alarm. With the approach considered in this work is possible to increment the probability of detection for a given and low signal-to-noise ratio, without increasing the number of samples collected from primary signal. However, to maintain a constant probability of false alarm, accurate techniques for noise variance estimation are needed, because detection-threshold value is highly dependent on the noise power present at each sensing interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.